Probing the heterologous metabolism supporting 6‐deoxyerythronolide B biosynthesis in Escherichia coli
نویسندگان
چکیده
Heterologous biosynthesis offers a new way to capture the medicinal properties presented by complex natural products. In this study, production of 6-deoxyerythronolide B (6dEB), the polyketide precursor to the antibiotic erythromycin, was used to probe the heterologous pathways needed for Escherichia coli-derived biosynthesis. More specifically, the heterologous proteins responsible for 6dEB production were varied by adjusting their respective gene dosage levels. In this way, heterologous components required for posttranslational modification, 6dEB biosynthesis, and substrate provision were adjusted in expression levels to observe the relative effect each has on final heterologous biosynthesis. The results indicate that both the biosynthetic and substrate provision heterologous proteins impact 6dEB formation to a greater extent when compared with posttranslational modification and suggest these components for future protein and metabolic engineering.
منابع مشابه
Metabolically engineered Escherichia coli for efficient production of glycosylated natural products
Significant achievements in polyketide gene expression have made Escherichia coli one of the most promising hosts for the heterologous production of pharmacologically important polyketides. However, attempts to produce glycosylated polyketides, by the expression of heterologous sugar pathways, have been hampered until now by the low levels of glycosylated compounds produced by the recombinant h...
متن کاملProduction of the potent antibacterial polyketide erythromycin C in Escherichia coli.
An Escherichia coli strain capable of producing the potent antibiotic erythromycin C (Ery C) was developed by expressing 17 new heterologous genes in a 6-deoxyerythronolide B (6dEB) producer strain. The megalomicin gene cluster was used as the source for the construction of two artificial operons that contained the genes encoding the deoxysugar biosynthetic and tailoring enzymes necessary to co...
متن کاملMultiplexed Integrating Plasmids for Engineering of the Erythromycin Gene Cluster for Expression in Streptomyces spp. and Combinatorial Biosynthesis
Bacteria in the genus Streptomyces and its close relatives are prolific producers of secondary metabolites with antibiotic activity. Genome sequencing of these bacteria has revealed a rich source of potentially new antibiotic pathways, whose products have never been observed. Moreover, these new pathways can provide novel genes that could be used in combinatorial biosynthesis approaches to gene...
متن کاملA multiplasmid approach to preparing large libraries of polyketides.
A three-plasmid system for heterologous expression of 6-deoxyerythronolide B synthase (DEBS) has been developed to facilitate combinatorial biosynthesis of polyketides made by type I modular polyketide synthases (PKSs). The eryA PKS genes encoding the three DEBS subunits were individually cloned into three compatible Streptomyces vectors carrying mutually selectable antibiotic resistance marker...
متن کاملErythromycin biosynthesis. Highly efficient incorporation of polyketide chain elongation intermediates into 6-deoxyerythronolide B in an engineered Streptomyces host.
Feeding of (2S,3R)-[2,3-13C2]-2-methyl-3-hydroxypentanoyl NAC thioester (1a) to the recombinant organism Streptomyces coelicolor CH999/pCK7 harboring the complete set of eryA genes from Saccharopolyspora erythraea encoding the 6-deoxyerythronolide B synthase (DEBS) resulted in the formation of 6-deoxyerythronolide B (2a) labeled with 13C at C-12 and C-13, as evidenced by the appearance of a pai...
متن کامل